Tentukanrentang interkuartil dan simpangan kuartil pada data di bawah ini: 19, 12, 14, 35, 7, 15, 10, 20, 25, 17, 23. Perbesar. Foto: buku Cerdas Belajar Matematika untuk Kelas XI. Kuartil bawah Q1 = 12 dan kuartil atas Q3 = 23. Rentang interkuartil (RAK) = Q3 - Q1 = 23-12 = 11. Simpangan kuartil = ½ RAK = ½ 11 = 5,5.
- Dilansir dari Buku Strategi Praktis Menguasai Tes Matematika SMA 2020 oleh Sobirin, pada ukuran penyebaran data, kita akan menemukan rumus menghitung jangkauan, jangkauan kuartil/hamparan, simpangan kuartil, hingga deviasi standar. Berikut pengertian dan rumus dari jangkauan, hamparan, hingga deviasi standarBaca juga Ukuran Pemusatan dan Penyebaran Data Berkelompok Jangkauan J Jangkauan adalah selisih antara data dengan nilai terbesar dan data dengan nilai terkecil pada data berkelompok. Rumus jangkauan data terbesar-data terkecil = Jangkauan kuartil/hamparan H Jangkauan kuartil/hamparan adalah selisih dari kuartil ketiga dengan kuartil hamparan Simpangan kuartil Qd atau jangkauan semi antarkuartil Simpangan kuartil atau jangkauan semi antarkuartil adalah setengah dari hasil kali selisih kuartil ketiga dengan kuartil pertama. Rumus simpangan kuartil Simpangan rata-rata SR Simpangan rata-rata adalah simpangan untuk nilai yang diobservasi terhadap rata-rata. Rumus simpangan rata-rata atau Baca juga Menentukan Simpangan Rata-rata dari Data
Padasoal ini, konsep yang digunakan adalah rataan, simpangan baku, dan koefisien keragaman. Langkah ke-3 : Menghitung rataan, simpangan baku, dan koefisien keragaman dari setiap bidang usaha. → Bidang usaha penerbitan KK = S/ x = 29,93/ 96 = 0,31 → Bidang usaha tekstil x =156 S = 40,69 KK = S/ x = 40,69/156 = 0,26 → Bidang usaha angkutan x = 161,6
Kelas 12 SMAStatistika WajibKuartilKuartilStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0220Manajer restoran cepat saji mengamati dan menghitung wakt...0335Nilai kuartil atas dari data pada tabel berikut adalah .....0343Perhatikan data berikut. Berat Badan Frekuensi 50-54 4 55...0340Tabel berikut menunjukkan distribusi frekuensi jarak tola...Teks videoDi sini ada sebuah pertanyaan simpangan kuartil dari data 10 13 12 11 14 15, 17 16 12 14 13 11 17 adalah Oke jadi di sini saya akan rumus dan juga tabel frekuensinya perhatikan di sini sudah ada tabel frekuensinya ya di sini ada datanya dan isinya adalah frekuensinya dimana total adalah 13. Nah, lalu di sini sudah ada ketentuan untuk mencari Q1 dan q3. Nah rumus untuk mencari simpangan kuartil adalahsimpangan kuartil promosi adalah Q 3 kurang Q 1 dibagi 2 nah balik dari sini harus mencari q3 dan Q 1 terlebih dahulu Nah di sini datanya 13 ya ganjil dan jika 13 ditambah satu itu tidak habis dibagi 4 batik harus menggunakan rumus ini untuk Q1 dan juga untuk ketiga rumus ini Mas ke-11 berarti X dikurang satu 13 dikurang satu 12 dibagi 4 berarti data yang ke 3 dan ditambah dengan isinya 13 + 13 / 4. Bakti idhata yang ke-empat dibagi dua Matikan data yang tanda tanya ke-4 adalah 12 berarti 11 + 12 / 2 hasilnya adalah 11,5 nilai kita punya Sekarang kita harus mencari ketiganya ketiganya di sini 3 dikali 1339 ditambah 140 dibagi 4 berarti x 10 + 13333 + 9 + 54 + 4 dibagi 4. Berarti data yang ke-11 dibagi 20 adalah 3679 di sini. Berarti data yang ke-10 di sini datang ke 11 berarti 15 + 16 / 12,5. Nah, Berarti simpangan kuartil adalah ketika menjadi SK simpangan kuartil berarti 15,5 kurang 11,5 / 2 di sini berarti 4 / 2 hasilnya adalah 2 jawabannya adalah Baiklah sekian pembahasan soal kanida sampai jam 16 anSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
\n \n\n simpangan kuartil dari data 16 15 15
terjawab• terverifikasi oleh ahli Tentukan simpangan kuartil dari data: 16 15 15 19 20 22 16 17 25 29 32 29 32 Iklan Jawaban terverifikasi ahli Abiiahh qd = simpangan kuartil bukannya simpangan quartil itu Q3-Q1 ?kalo dibagi 2 namanya interquartil ?maaf kalo salah Nomor 16 Simpangan kuartil dari data 16 15 15 19 20 22 16 17 25 29 32 29 32 adalah .... $\spadesuit \, $ Data diurutkan $\spadesuit \, $ Menentukan nilai kuartil $Q_1 = \frac{16+16}{2} = 16 $ $Q_3 = \frac{29+29}{2} = 29 $ $\spadesuit \, $ Menentukan simpangan kuartil $S_k = \frac{1}{2}Q_3-Q_1 = \frac{1}{2}29-16=\frac{1}{2}.13 = 6,5 $ Jadi, simpangan kuartilnya adalah 6,5 . $\heartsuit $ Nomor 17 Jumlah 6 suku pertama deret aritmetika adalah 24. Sedangkan jumlah 10 suku pertamanya adalah 100. Suku ke-21 adalah .... $\clubsuit \, $ Barisan dan deret aritmetika $U_n = a + n-1b \, \, $ dan $ \, S_n = \frac{n}{2}2a+n-1b $ $\clubsuit \, $ Menentukan nilai $a \, $ dan $ \, b $ $S_6 = 24 \rightarrow \frac{6}{2}2a+6-1b = 24 \rightarrow 2a+5b=8 \, \, $ ...persi $S_{10} = 100 \rightarrow \frac{10}{2}2a+10-1b = 100 \rightarrow 2a+9b=20 \, \, $ ...persii $\clubsuit \, $ Eliminasi persi dan persii $\begin{array}{cc} 2a+9b=20 & \\ 2a+5b=8 & - \\ \hline 4b = 12 \rightarrow b=3 & \end{array} $ persi $ 2a+5b=8 \rightarrow 2a + 5. 3 = 8 \rightarrow a = -\frac{7}{2} $ sehingga $U_{21} = a+ 20b = -\frac{7}{2} + 20 . 3 = -\frac{7}{2} + 60 = 56\frac{1}{2} $ Jadi, nilai suku ke-21 adalah $ 56\frac{1}{2} . \heartsuit $ Nomor 18 Jumlah 10 suku pertama deret $ {}^a \log \frac{1}{x} + {}^a \log \frac{1}{x^2} + {}^a \log \frac{1}{x^3} + .... \, \, $ adalah .... $\spadesuit \, $ Deret aritmetika $ \, S_n = \frac{n}{2}2a+n-1b $ $\spadesuit \, $ Menentukan nilai $U_1 \, $ dan beda $ {}^a \log \frac{1}{x} + {}^a \log \frac{1}{x^2} + {}^a \log \frac{1}{x^3} + .... \, \, $ $U_1 = {}^a \log \frac{1}{x} $ $b = U_2-U_1 = {}^a \log \frac{1}{x^2} - {}^a \log \frac{1}{x} = {}^a \log \left \frac{1}{x} \frac{1}{x^2} \right = {}^a \log \frac{1}{x} $ $\spadesuit \, $ Menentukan jumlah 10 suku pertama $\begin{align} S_{10} & = \frac{10}{2}2. {}^a \log \frac{1}{x} +9. {}^a \log \frac{1}{x} \\ & = 5. \left 11. {}^a \log \frac{1}{x} \right \\ & = 55. {}^a \log \frac{1}{x} \\ & = 55{}^a \log x^{-1} \\ & = 55. -1. {}^a \log x \\ S_{10} & = -55 {}^a \log x \end{align}$ Jadi, jumlah 10 suku pertamanya adalah $ -55 {}^a \log x . \heartsuit $ Nomor 19 Kelas A terdiri atas 35 orang murid, sedangkan kelas B terdiri 40 orang murid. Nilai statistika rataa - rata kelas B adalah 5 lebih baik dari nilai rata - rata kelas A. Apabila nilai rata - rata kelas A dan B adalah 57$\frac{2}{3} \, $ , maka nilai rata - rata kelas A adalah ..... $\clubsuit \,$ Misalkan, rata - rata A adalah $a \, $ dan rata - rata B adalah $\, b$ Rata - rata B 5 lebih baik dari A $\overline{x}_B = 5 + \overline{x}_A \rightarrow b = 5 + a \, \, $ ...persi Rata - rata gabungan A dan B $\begin{align} \overline{x}_{gb} & = \frac{n_A.\overline{x}_A + n_B.\overline{x}_B}{n_A + n_B} \\ 57\frac{2}{3} & = \frac{35a + 40b}{35+40} \\ 35a+40b & = 75 \times \frac{173}{3} \\ 7a + 8b & = 865 \, \, \, \text{...persii} \end{align}$ $\clubsuit \,$ Substitusi persi ke persii $7a + 8b = 865 \rightarrow7a + 8.5 + a = 865 \rightarrow a = 55 $ Jadi, rata - rata kelas A adalah 55. $ \heartsuit $ Nomor 20 Untuk $x \, $ dan $y \, $ yang memenuhi sistem persamaan $\left\{ \begin{array}{c} 3^{x-2y+1} = 9^{x-2y} \\ 4^{x-y+2} = 32^{x-2y+1} \end{array} \right. $ Maka nilai $ .... $ $\spadesuit \, $ Menyederhanakan persamaan $\begin{align} \text{pers1 } \, \, 3^{x-2y+1} & = 9^{x-2y} \\ 3^{x-2y+1} & = 3^2^{x-2y} \\ 3^{x-2y+1} & = 3^{2x-4y} \\ x-2y+1 & = 2x-4y \\ -x+ 2y & = -1 \, \, \text{...persi} \end{align}$ $\begin{align} \text{pers2 } \, \, 4^{x-y+2} & = 32^{x-2y+1} \\ 2^2^{x-y+2} & = 2^5^{x-2y+1} \\ 2^{2x-2y+4} & = 2^{5x-10y+5} \\ 2x-2y+4 & = 5x-10y+5 \\ 3x-8y & = -1 \, \, \text{...persii} \end{align}$ $\spadesuit \, $ Eliminasi persi dan persii $\begin{array}{cccc} -x+ 2y = -1 & \times 3 & -3x+6y = -3 & \\ 3x- 8y = -1 & \times 1 & 3x- 8y = -1 & + \\ \hline & & -2y = -4 \rightarrow y = 2 & \end{array} $ persi $ -x+ 2y = -1 \rightarrow -x+ = -1 \rightarrow x = 5 $ sehingga nilai $ = = 10 $ Jadi, nilai $ = 10 . \heartsuit $ 1Simpangan kuartil dari data tersebut adalah A.2 B.1,5 C.1 D.0,5 2.Tentukan kuartil bawah(Q1),kuartil tengah(Q2),dan kuartil atas(Q3)dari data berikut! 20 35 50 45 30 30 25 40 45 30 35! 3.Nilai rapor Ani, siswa kelas IX sebagai berikut: a. Kuartil bawah, median, dan kuartil atas; b. Jangkauan interkuartil dan simpangan kuartil
Materi yang satu ini mungkin cukup sulit dipahami oleh Sobat Zenius. Akan tetapi, elo nggak perlu khawatir. Pasalnya, dalam artikel ini gue mau ngebahas secara detail mengenai materi simpangan kuartil, mulai dari rumus dan cara mencari simpangan kuartil, jangkauan antar kuartil, langkah, pagar hingga contoh soalnya. Sebelumnya kita sudah pernah bahas tentang simpangan kuartil data tunggal dan data kelompok. Kita juga sudah pernah bahas desil dan persentil. Ternyata, masih ada, lho, pembahasan lanjutan dari materi ini. Ukuran penyebaran data perlu Sobat Zenius kuasai setelah mengetahui nilai dari masing-masing kuartil. Lantas, bagaimana cara menghitung simpangan kuartil? Nah, daripada Sobat Zenius semakin penasaran, yuk, simak artikel ini sampai selesai! Apa yang Dimaksud Jangkauan, Jangkauan Antar-kuartil, Simpangan Kuartil, Langkah, dan Pagar?Rumus Simpangan Kuartil, Jangkauan antar Kuartil, Jangkauan Kuartil, Langkah, dan PagarContoh SoalSoal Latihan Apa yang Dimaksud Jangkauan, Jangkauan Antar-kuartil, Simpangan Kuartil, Langkah, dan Pagar? Jangkauan biasa disebut juga dengan range atau rentang. Jangkauan dinyatakan dengan huruf J. Jangkauan adalah selisih dari data/datum terbesar dikurangi data/datum terkecil. Jangkauan antar kuartil dinamakan juga rentang antar-kuartil atau hamparan. Jangkauan antar kuartil dinyatakan dengan huruf H. Jangkauannya merupakan selisih antara kuartil atas/Q3 dan kuartil bawah/Q1. Simpangan kuartil dinamakan juga rentang semi antar-kuartil karena merupakan setengah dari hamparan atau jangkauan antar-kuartil. Nilai dari simpangan kuartil juga dapat digunakan untuk melihat jarak dari kuartil dua ke kuartil satu atau ke kuartil tiga, karena sebenarnya nilai simpangan kuartil adalah rata-rata jarak dari kuartil tersebut. Namun, nilai ini tidak selalu tepat, ya. Dalam statistika, pengertian langkah adalah satu setengah kali panjang satu hamparan. Sebenarnya, langkah digunakan untuk mencari nilai pagar dalam dan pagar luar. Pagar terbagi atas pagar dalam dan pagar luar. Pagar dalam adalah nilai satu langkah di bawah kuartil bawah. Pagar luar adalah nilai satu langkah di atas kuartil atas. Pagar digunakan untuk membatasi data. Biasanya, jika data normal, data hanya berada di dalam pagar dalam dan pagar luar. Nah, sebelum lanjut ke pembahasan mengenai rumus simpangan kuartil dan lainnya, Sobat Zenius bisa banget, lho, download aplikasi Zenius dulu! Lewat aplikasi, elo bakal menemukan ribuan contoh soal beserta pembahasan yang bisa elo pelajari dengan saksama, mulai dari contoh soal Matematika, Bahasa Indonesia, Bahasa Inggris, hingga mata pelajaran lainnya. Jadi, nggak usah lama-lama lagi, segera download banner di bawah ini untuk download aplikasinya! Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! Tidak banyak perbedaan pada masing-masing rumusnya, baik pada tunggal maupun data kelompok. Perbedaan terdapat pada nilai data terkecil dan data terbesar pada jangkauan, Sobat Zenius. Pada data tunggal, data terkecil dan data terbesarnya dapat dilihat secara jelas, sedangkan pada data kelompok data terkecil dan data terbesarnya diambil dari batas bawah kelas bawah dan batas atas kelas atas. Yuk, kita intip rumus-rumusnya! Rumus jangkauan Rumus jangkauan antar kuartil Rumus simpangan kuartil Rumus langkah Rumus pagar Pagar dalam = Pagar luar = Contoh Soal Nah, kini Sobat Zenius sudah tahu, kan, rumus-rumusnya. Sekarang, mari kita coba lihat contoh soal simpangan kuartil, jangkauan kuartil, jangkauan antar kuartil, pagar, dan langkah. Data tunggal Dari data 6, 6, 7, 9, 13, 16, 20, berapa nilai jangkauan, jangkauan antar-kuartil, simpangan kuartil, langkah, dan pagarnya? Jangkauan J = 20 – 6 Jangkauan antar kuartil Tentukan terlebih dahulu nilai Q1, Q2, dan Q3. Dari data tersebut, diperoleh Q1 = 6, Q2 = 9, dan Q3 = 16 H = 16 – 6 = 10 Simpangan kuartil Cara mencari simpangan kuartil data tunggal bisa Sobat Zenius aplikasikan menggunakan rumus yang sudah disebutkan sebelumnya. Dari rumus di atas, kita bisa mendapatkan angka berikut Qd = ½ H = ½ 10 = 5 Langkah L = 3/2 H = 3/2 10 = 15 Pagar dalam Pd = 6 – 15 = -9 Pagar luar Pl = 16 + 15 = 31 Data kelompok Dari tabel di atas, berapa nilai jangkauan, jangakauan antar-kuartil, simpangan kuartil, langkah, dan pagarnya? Jangkauan Pada data seperti tabel di atas, X min dan X max bukanlah 40 dan 69, tetapi 39,5 dan 69,5. J = 69,5 – 39,5 = 30 Jangkauan antar kuartil Tentukan terlebih dahulu nilai Q1, Q2, dan Q3. Dari data tersebut, diperoleh Q1 = 49,7, Q2 = 52,7, dan Q3 = 57 Setelah itu, Sobat Zenius bisa gunakan rumus jangkauan antar kuartil di bawah ini H = 57 – 49,7 = 7,3 Simpangan kuartil Pakai rumus di bawah ini untuk mencari simpangan kuartil data kelompok Qd = ½ H = ½ 7,3 = 3,65 Langkah L = 3/2 H = 3/2 7,3 = 10,95 Pagar Pagar dalam = Pd = 49,7 – 10,95 = 38,75 Pagar luar = Pl = 57 + 10,95 = 67,95 Sekarang giliran Sobat Zenius. Jawab soal di bawah ini dengan benar, ya! Soal Latihan Tentukan jangkauan, jangkauan antar-kuartil, simpangan kuartil, langkah, dan pagar dari data berikut 3, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8! Jangkauan = … Jangkauan antar-kuartil = … Simpangan kuartil = … Langkah = … Pagar dalam = … Pagar luar = … Jika Sobat Zenius sudah berhasil menjawabnya, berarti elo sudah paham dengan materi kali ini. Namun, jangan berhenti sampai di sini, ya, guys. Perbanyak latihan soal! Itu dia penjelasan singkat dari gue mengenai rumus simpangan kuartil, jangkauan antar kuartil, pagar, hingga langkah. Pada dasarnya, materi Statistika yang satu ini tidak begitu sulit jika Sobat Zenius terus belajar dan berlatih dengan tekun. Beruntungnya Sobat Zenius bisa latihan dengan konsisten melalui ribuan contoh soal yang disediakan sama Zenius, nih! Selain contoh soal, di sana juga pembahasan yang bikin elo makin jago dalam ngerjain soal ujian nantinya. Kalau elo mau berlatih dari sekarang, gampang banget! Elo bisa segera langganan paket Zenius dengan klik gambar di bawah ini! Nah, sebelum itu, elo juga bisa mempelajari materi simpangan kuartil lebih dalam lagi melalui video pembahasan dari tutor Zenius. Buat aksesnya, elo tinggal klik banner di bawah ini, ya! Selamat belajar! Jangan lupa juga untuk mengikuti keseruan lainnya dari Zenius di YouTube! Sampai jumpa di materi lainnya! Baca Juga Artikel Lainnya Rumus Kuartil Rumus Desil dan Persentil Rumus Peluang Originally published September 18, 2021Updated by Maulana Adieb
MatematikaSTATISTIKA Simpangan kuartil dari data 16, 15, 15, 19, 20, 22, 16, 17,25, 29, 32, 29, 32 adalah Kuartil Statistika Wajib STATISTIKA Matematika Cek video lainnya Teks video Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika 12 SMA Peluang Wajib Kekongruen dan Kesebangunan Statistika Inferensia Dimensi Tiga
Kelas 12 SMAStatistika WajibKuartilKuartilStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0220Manajer restoran cepat saji mengamati dan menghitung wakt...0335Nilai kuartil atas dari data pada tabel berikut adalah .....0343Perhatikan data berikut. Berat Badan Frekuensi 50-54 4 55...0340Tabel berikut menunjukkan distribusi frekuensi jarak tola...Teks videoKalau fans simpangan kuartil dari data 13 12 14, 11, 13, 15, 14, 12, 16, 13, 14, 15 dan 13 adalah titik-titik untuk menjawab soal ini kita akan menggunakan konsep dari kuartil pada data tunggal di mana untuk data genap dan tidak habis dibagi 4 maka kuartil 1 akan sama dengan data ke seperempat x n + 25 N adalah jumlah sampel nya kemudian kuartil 3 atau q3 ini sama dengan data ke seperempat x 3X + 2. Kemudian untuk menjawab soal ini juga kita perlu ketahui bahwa simpangan kuartil atau Q D ini = setengah X kuartil 3 dikurang kuartil 1 kemudian kita perlu untuk mengurutkan data data pada soal ini dari yang terkecil ke yang terbesar di sini menjadi 11 11 12 12 13 1313 13 14 14 14 15 15 kemudian 16 mana kalau kita hitung disini kita dapat nilai UN = 14 n di sini adalah nilainya genap dan tidak habis dibagi 4 maka kita akan menggunakan rumus kuartil pada yang telah kita tulis tadi di atas berarti di sini kuartil 1 = e = data ke server 4 * n + 2 / 14 + 2 = 16 x 14 = 4, maka di sini sama dengan data ke-45 data-data keempat nilainya sama dengan 12 atau kuartil 3 ini sama dengan data ke per 4 * 3 n + 2 b 3 * 14, / 42 + 2 = 44 kemudian dikalikan seperempat sama dengan 11 dari data ke sebelah sini sama dengan 14 vital dapat di sini kuartil Q1 dan kuartil 3 nilainya kemudian kita menghitung nilai dari simpangan kuartil atau Q D = setengah X q3 min Q 1lagi nih = setengah X * 14 MIN 12 / = 2 setengah kalikan 2 nilainya = 1 ini adalah opsi jawaban yang B di kasih sampai bertemu di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Simpangankuartil dari data 11 9 15 12 8 dan 16 adalah pilih salah satu a 2 b 3 c 4 d 5 e 6 Lamhunghn 1 minute ago 5 Comments Top 1: simpangan kuartil dari data: 3,4,6,7,5,6,8,9,10,8,9,11

A. Simpangan KuartilAdik-adik, tahukah kalian? Simpangan kuartil dismbolkan dengan Qd. Apa itu simpangan kuartil? Simpangan kuartil adalah setengah dari jangkauan kuartil atau setengah dari hamparan atau setengah dari jangkauan interkuartil. Rumusnya bisa dituliskanB. Simpangan Rata-rata1. Simpangan rata-rata data tunggal2. Simpangan rata-rata data kelompokYuk kita lihat contoh soalnya1. Diketahui data 12, 14, 15, 16, 17, 17, 18, 19Hitunglah simpangan kuartil dari data tersebut!JawabBanyak data ada adalah antara data ke 4 dan data ke 5Q2 = 16 + 17 2 = 33 2 = 16,5Q1 = 14 + 15 2 = 29 2 = 14,5Q3 = 17 + 18 2 = 35 2 = 17,5Simpangan QuartilQd = ½ Q3 – Q1 = ½ 17,5 – 14,5 = ½ 3 = 1,52. Berapakah simpangan kuartil dari data 6, 7, 7, 8, 8 , 8, 9, 9, 10, 11, 12, 13JawabBanyaknya data = 12Q2 adalah diantara data ke 6 dan data ke 7Q2 = 8 + 9 2 = 17 2 = 8,5Q1 = 7 + 8 2 = 15 2 = 7,5Q3 = 10 + 11 2 = 21 2 = 10,5Qd = ½ Q3 – Q1 = ½ 10,5 – 7,5 = ½ 3 = 1,53. Berapakah simpangan kuartil dari data 7, 5, 10, 20, 13, 8, 2JawabUrutkan dulu datanya 2, 5, 7, 8, 10, 13, 20Banyak data = 7Q2 adalah data ke 4Q2 = 8Q1 = 5Q3 = 13Qd = ½ Q3 – Q1 = ½ 13 – 5 = ½ 8 = 44. Tentukan simpangan rata-rata dari data 32, 23, 28, 26, 20, 11, 22, 8, 17, 13JawabPertama, cari rata-ratax ̅= 32 + 23 + 28 + 26 + 20 + 11 + 22 + 8 + 17 + 13 10 = 200 10 = 205. Perhatikan tabel berikutSimpangan rata-rata dari data di atas adalah...Jawabx ̅ = 2 x 6 + 3 x 9 + 4 x 5 + 5 x 7 + 6 x 3 30 = 12 + 27 + 20 + 35 + 18 30= 112 30= 3,7Oke.. semoga kalian semakin paham ya dengan 2 materi ini.. sampai bertemu di materi-materi selanjutnya...

FsWAs. 222 69 324 497 213 33 60 100 204

simpangan kuartil dari data 16 15 15